spanduk
Beranda

Ruang Uji Suhu

Ruang Uji Suhu

  • Small Rapid Temperature Change (Wet Heat) Test Chamber
    Nov 01, 2025
    In response to the testing and R&D requirements of electronic components such as semiconductors and automotive electronics, Lab Companion has developed a smaller capacity small rapid temperature change (wet heat) test chamber. While maintaining the advantages of standard rapid temperature change test chambers, it can also meet the needs of customers who have requirements for space size, with a single-phase 220VAC voltage specification. It can also meet the equipment usage requirements of customers in civilian office areas such as research institutions and universities. Its main features are as follows: 1. It has powerful heating and cooling performance 2. Heating rate: 15℃/min; Cooling rate: 15℃/min 3. (Temperature range: -45℃ to +155℃) 4. Single-phase 220VAC, meeting the electricity demands of more customers 5. Single-phase 220VAC, suitable for industrial and civil power supply specifications, can meet the equipment power demands of customers in civil office areas such as research institutions and universities. 6. The body is small and exquisite, with a compact structure and easy to move 7. The miniaturized structure design of the test chamber can effectively save configuration space. 8. The inner tank volume is 100L, the width is 600mm, the depth is less than 1400mm, and the product volume is less than 1.1m ³. It is suitable for the vast majority of residential and commercial elevators in China (GB/T7025.1). 9. The standard universal wheels enable the product to move freely at the installation site. 10. Standard air-cooled specification is provided, facilitating the movement and installation of the product 11. At the same time, it saves customers the cost and space of configuring cooling towers. 12. A more ergonomic operation touch screen design 13. Through the multi-angle adjustment of the touch screen, it can meet the operation needs and provide the best field of vision for users of different heights, making it more convenient and comfortable. 14. Energy-saving cold output temperature and humidity control system, with dual PID and water vapor partial pressure control, features mature technology and extremely high precision. 15. Network control and data acquisition can be carried out through the interface (RS-485/GPIB/Web Lan/RS-232C). 16. It is standard-equipped with left and right cable holes (50mm), which facilitates the connection of power on the sample and the conduct of multiple measurements. 17. The controller adopts a color LCD touch screen, which is simple and convenient to operate 18. Through the controller, two control methods, fixed value and program, can be selected to adapt to different applications. 19. The program control can be set to 100 modes, with 99 steps for each mode. Repeat the loop up to 999 times. 20. Multiple languages can be easily switched (Simplified Chinese, English), and test data can be stored on a USB flash drive.
    BACA SELENGKAPNYA
  • How to Prevent Condensation when Conducting Low-temperature Tests in a Temperature Test Chamber
    Oct 30, 2025
    When conducting low-temperature tests in a temperature test chamber, preventing condensation is a crucial and common issue. Condensation not only affects the accuracy of test results, but may also cause irreversible damage to products, such as short circuits, metal corrosion, and degradation of material performance.   The essence of condensation is that when the surface temperature of the product drops below the "dew point temperature" of the ambient air, water vapor in the air condenses into liquid water on the product surface. Based on this principle, the core idea for preventing condensation is to avoid the surface temperature of the product being lower than the dew point temperature of the ambient air. The specific methods are as follows:   Controlling the rate of temperature change is the most commonly used and effective method. By slowing down the rate of cooling or heating, the temperature of the product can keep up with the changes in ambient temperature, thereby reducing the temperature difference between the two and preventing the surface temperature of the product from falling below the dew point. 2. Use dry air or nitrogen to directly reduce the absolute humidity of the air inside the test chamber, thereby significantly lowering the dew point temperature. Even if the surface of the product is very cold, as long as the dew point of the ambient air is lower, condensation will not occur. It is usually used for products that are extremely sensitive to moisture, such as precision circuit boards and aerospace components, etc. 3. Local heating or insulation can ensure that the surface temperature of key components (such as circuit boards and sensors) is always above the dew point, which is more suitable for products with complex structures where only certain areas are sensitive to humidity. 4. Skillfully arrange the temperature cycle through programming to avoid exposing the product at the stage when condensation is most likely to occur. After the test is completed, do not directly open the box door in a normal temperature and humidity environment. Dry gas should first be introduced into the box and the temperature should be slowly raised to room temperature. After the product temperature has also risen, the box can be opened and taken out.   For a typical low-temperature test, the following process can be followed to prevent condensation to the greatest extent First, place the product and the test chamber in a standard laboratory environment for a sufficient period of time to stabilize their condition. Subsequently, within the range close to room temperature to "0°", set up one or more short-term insulation platforms. Or maintain it at the target low temperature for a sufficient period of time, during which the temperature inside and outside the product is consistent, and usually no new condensation will form. Also, set a heating rate that is slower than the cooling rate. Set up an insulation platform at the initial stage of temperature rise and when approaching the ambient temperature. After the temperature rise is completed, do not open the door immediately. Keep the box door closed and let the product stand in the box for "30 minutes to 2 hours" (depending on the heat capacity of the product), or introduce dry air into the box to accelerate the equalization process. After confirming that the product temperature is close to the ambient temperature, open the box door and take out the product.   The best practice is to use the above methods in combination. For instance, in most cases, "controlling the temperature variation rate" combined with "optimizing the test program (especially during the recovery stage)" can solve 90% of the condensation problems. For military or automotive electronics tests with strict requirements, it may be necessary to simultaneously stipulate the temperature variation rate and require the introduction of dry air.
    BACA SELENGKAPNYA
  • Dragon Heat Flow Meter Temperature Control Test
    Oct 29, 2025
    Temperature control tests are usually conducted under two conditions: no-load (without sample placement) and load (with standard samples or actual samples being tested placed). The basic testing steps are as follows:   1. Preparatory work: Ensure that the heat flow meter has been fully preheated and is in a stable state. Prepare high-precision temperature sensors that have undergone metrological calibration (such as multiple platinum resistance PT100), and their accuracy should be much higher than the claimed indicators of the heat flow meter to be measured. 2. Temperature uniformity test: Multiple calibrated temperature sensors are arranged at different positions within the working area of the heat flow meter's heating plate (such as the center, four corners, edges, etc.). Set one or more typical test temperature points (such as -20°C, 25°C, 80°C). After the system reaches thermal stability, simultaneously record the temperature values of all sensors. Calculate the maximum, minimum and standard deviation of these readings to evaluate the uniformity. 3. Temperature control stability and accuracy test: Fix a calibrated temperature sensor at the center of the heating plate (or closely attach it to the built-in sensor of the instrument). Set the target temperature and start the temperature control. Record the entire process from the start to reaching the target temperature (for analyzing response speed and overshoot). After reaching the target temperature, continuously record for at least 1-2 hours (or as per standard requirements), with a sampling frequency high enough (such as once per second), and analyze the recorded data. 4. Load test: Place standard reference materials with known thermal physical properties or typical samples to be tested between the hot plates. Repeat step 3 and observe the changes in temperature control performance under load conditions. Load will directly affect the thermal inertia of the system, thereby influencing the response speed and stability.   When you are choosing or using a heat flow meter, be sure to carefully review the specific parameters regarding temperature control performance in its technical specification sheet and understand under what conditions (no-load/load) these parameters were measured. Lab will provide clear and verifiable temperature control test data and reports.
    BACA SELENGKAPNYA
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    BACA SELENGKAPNYA
  • Lab Aging Test Chamber Working Principle
    Oct 17, 2025
    Many products (such as rubber, plastic, insulating materials, electronic components, etc.) will age due to the combined effects of heat and oxygen when exposed to the natural environment over a long period of use, such as becoming hard, brittle, cracking, and experiencing a decline in performance. This process is very slow in its natural state. The air-exchange aging test chamber greatly accelerates the aging process by creating a continuously high-temperature environment and constantly replenishing fresh air in the laboratory, thereby evaluating the long-term heat aging resistance of materials in a short period of time.   The working principle of Lab aging test chamber mainly relies on the collaborative efforts of three systems: 1. The heating system provides and maintains a high-temperature environment inside the test chamber. High-performance electric heaters are usually adopted and installed at the bottom, back or in the air duct of the test chamber. After the controller sets the target temperature (for example, 150°C), the heater starts to work. The air is blown through the heater by a high-power fan. The heated air is forced to circulate inside the box, causing the temperature inside the box to rise evenly and remain at the set value. 2. The ventilation system is the key that distinguishes it from ordinary ovens. At high temperatures, the sample will undergo an oxidation reaction with oxygen in the air, consuming oxygen and generating volatile products. If the air is not exchanged, the oxygen concentration inside the box will decrease, the reaction will slow down, and it may even be surrounded by the products of the sample's own decomposition. This is inconsistent with the actual usage of the product in a naturally ventilated environment. 3. The control system precisely controls the parameters of the entire testing process. The PID (Proportional-integral-Derivative) intelligent control mode is adopted. The real-time temperature is fed back through the temperature sensor inside the box (such as platinum resistance PT100). The controller precisely adjusts the output power of the heater to ensure that the temperature fluctuation is extremely small and remains stable at the set value. Set the air exchange volume within a unit of time (for example, 50 air changes per hour). This is one of the core parameters of the air-exchange aging test chamber, which usually follows relevant test standards (such as GB/T, ASTM, IEC, etc.).   The test chamber creates a high-temperature environment through electric heaters, achieves uniform temperature inside the box by using centrifugal fans, and continuously expels exhaust gases and draws in fresh air through a unique ventilation system. Thus, under controllable experimental conditions, it simulates and accelerates the aging process of materials in a naturally ventilated thermal and oxygen environment. The biggest difference between it and a common oven lies in its "ventilation" function, which enables its test results to more truly reflect the heat aging resistance of the material during long-term use.
    BACA SELENGKAPNYA
  • Bagaimana Memilih Metode Pendinginan yang Tepat untuk Ruang Uji?
    Sep 09, 2025
    Pendinginan udara dan pendinginan air adalah dua metode pembuangan panas yang umum digunakan dalam peralatan refrigerasi. Perbedaan paling mendasar di antara keduanya terletak pada perbedaan media yang digunakan untuk membuang panas yang dihasilkan sistem ke lingkungan eksternal: pendinginan udara bergantung pada udara, sementara pendinginan air bergantung pada air. Perbedaan mendasar ini telah memunculkan berbagai perbedaan di antara keduanya dalam hal instalasi, penggunaan, biaya, dan skenario yang berlaku. 1. Sistem berpendingin udaraPrinsip kerja sistem pendingin udara adalah memaksa aliran udara melalui kipas, meniupkannya ke komponen inti pembuangan panas - kondensor bersirip, sehingga membawa panas di kondensor dan membuangnya ke udara sekitarnya. Pemasangannya sangat sederhana dan fleksibel. Peralatan ini dapat beroperasi hanya dengan menghubungkannya ke catu daya dan tidak memerlukan fasilitas pendukung tambahan, sehingga memiliki persyaratan terendah untuk renovasi lokasi. Kinerja pendinginan ini sangat dipengaruhi oleh suhu sekitar. Pada musim panas yang terik atau lingkungan bersuhu tinggi dengan ventilasi yang buruk, karena berkurangnya perbedaan suhu antara udara dan kondensor, efisiensi pembuangan panas akan menurun drastis, mengakibatkan penurunan kapasitas pendinginan peralatan dan peningkatan konsumsi energi operasional. Selain itu, akan disertai dengan kebisingan kipas yang cukup besar selama pengoperasian. Investasi awalnya biasanya rendah, dan perawatan hariannya relatif mudah. ​​Tugas utamanya adalah membersihkan debu pada sirip kondensor secara teratur untuk memastikan ventilasi yang lancar. Biaya operasional utama adalah konsumsi listrik. Sistem berpendingin udara sangat cocok untuk peralatan berukuran kecil dan menengah, area dengan listrik melimpah tetapi sumber daya air langka atau akses air yang tidak nyaman, laboratorium dengan suhu lingkungan yang dapat dikontrol, serta proyek dengan anggaran terbatas atau mereka yang lebih menyukai proses instalasi yang sederhana dan cepat. 2. Sistem berpendingin airPrinsip kerja sistem pendingin air adalah memanfaatkan sirkulasi air yang mengalir melalui kondensor berpendingin air khusus untuk menyerap dan membuang panas sistem. Aliran air panas biasanya dialirkan ke menara pendingin luar ruangan untuk pendinginan dan kemudian didaur ulang kembali. Pemasangannya rumit dan membutuhkan seperangkat lengkap sistem air eksternal, termasuk menara pendingin, pompa air, jaringan pipa air, dan perangkat pengolahan air. Hal ini tidak hanya menentukan lokasi pemasangan peralatan, tetapi juga menuntut perencanaan dan infrastruktur lokasi yang tinggi. Kinerja pembuangan panas sistem sangat stabil dan pada dasarnya tidak terpengaruh oleh perubahan suhu lingkungan eksternal. Sementara itu, kebisingan pengoperasian di dekat badan peralatan relatif rendah. Investasi awalnya tinggi. Selain konsumsi listrik, terdapat juga biaya lain seperti konsumsi sumber daya air yang terus-menerus selama operasi sehari-hari. Pekerjaan pemeliharaan juga lebih profesional dan kompleks, dan diperlukan untuk mencegah pembentukan kerak, korosi, dan pertumbuhan mikroba. Sistem berpendingin air terutama cocok untuk peralatan industri berskala besar dan berdaya tinggi, bengkel dengan suhu sekitar yang tinggi atau kondisi ventilasi yang buruk, serta situasi yang memerlukan stabilitas suhu dan efisiensi pendinginan yang sangat tinggi. Memilih antara pendingin udara dan pendingin air bukanlah tentang menilai keunggulan atau kelemahan absolutnya, melainkan tentang menemukan solusi yang paling sesuai dengan kondisi spesifik seseorang. Keputusan harus didasarkan pada pertimbangan berikut: Pertama, peralatan berdaya tinggi yang besar biasanya lebih menyukai pendingin air untuk mencapai kinerja yang stabil. Pada saat yang sama, iklim geografis laboratorium (apakah panas), kondisi pasokan air, ruang instalasi, dan kondisi ventilasi perlu dievaluasi. Kedua, jika investasi awal yang relatif rendah, pendingin udara merupakan pilihan yang tepat. Jika fokusnya adalah pada efisiensi energi dan stabilitas operasional jangka panjang, dan seseorang tidak mempermasalahkan biaya konstruksi awal yang relatif tinggi, maka pendingin air memiliki lebih banyak keuntungan. Terakhir, perlu dipertimbangkan apakah seseorang memiliki kemampuan profesional untuk melakukan perawatan rutin pada sistem air yang kompleks.
    BACA SELENGKAPNYA
  • Prinsip Kerja Oven Vakum Lab Companion Prinsip Kerja Oven Vakum Lab Companion
    Sep 02, 2025
    Oven vakum Lab Companion adalah perangkat presisi yang mengeringkan bahan dalam kondisi tekanan rendah. Prinsip kerjanya didasarkan pada prinsip ilmiah inti: dalam keadaan vakum, titik didih cairan akan menurun secara signifikan. Proses kerjanya dapat dibagi menjadi tiga bagian utama: 1. Penciptaan vakum: Dengan terus-menerus mengekstraksi udara dari ruang oven melalui pompa vakum, lingkungan internal diturunkan ke tingkat yang jauh di bawah tekanan atmosfer (biasanya hingga 10 Pa atau bahkan lebih tinggi). Langkah ini mencapai dua tujuan: Pertama, mengurangi kandungan oksigen di dalam rongga secara signifikan, mencegah material teroksidasi selama proses pemanasan; Kedua, menciptakan kondisi untuk proses fisik inti: pendidihan suhu rendah.2. Pemanasan menyediakan energi: Bersamaan dengan terciptanya lingkungan vakum, sistem pemanas (biasanya menggunakan kabel pemanas listrik atau pelat pemanas) mulai bekerja, menyediakan energi termal untuk material di dalam ruangan. Karena tekanan internal yang sangat rendah, titik didih uap air atau pelarut lain yang terkandung dalam material turun drastis. Misalnya, pada tingkat vakum -0,085MPa, titik didih air dapat diturunkan hingga sekitar 45℃. Ini berarti material tidak perlu dipanaskan hingga suhu 100℃ seperti pada umumnya, dan uap air internal dapat menguap dengan cepat pada suhu yang lebih rendah.3. Penghilangan uap: Uap air atau uap pelarut lain yang dihasilkan oleh penguapan akan dilepaskan dari permukaan dan bagian dalam material. Karena perbedaan tekanan di dalam rongga, uap-uap ini akan berdifusi dengan cepat dan terus-menerus ditarik oleh pompa vakum, kemudian dibuang ke lingkungan luar. Proses ini berlangsung terus-menerus, memastikan lingkungan yang kering tetap terjaga dan mencegah uap kembali mengembun di dalam rongga, sehingga mendorong reaksi pengeringan berlangsung terus-menerus dan efisien menuju dehidrasi. Fitur "pengeringan suhu rendah dan efisiensi tinggi" pada oven vakum membuatnya banyak digunakan di bidang farmasi, kimia, elektronik, pangan, dan ilmu material, terutama cocok untuk memproses material berharga, sensitif, atau sulit dikeringkan dengan metode konvensional.
    BACA SELENGKAPNYA
  • Penerapan ruang uji suhu tinggi dan rendah dalam penelitian material Energi baru Penerapan ruang uji suhu tinggi dan rendah dalam penelitian material Energi baru
    Aug 30, 2025
    1. Baterai lithium-ion: Pengujian suhu tinggi dan rendah dilakukan pada semua tahap R&D baterai lithium-ion, mulai dari bahan, sel hingga modul. 2. Tingkat material: Evaluasi sifat fisik dan kimia dasar material dasar seperti material elektroda positif dan negatif, elektrolit, dan separator pada berbagai suhu. Misalnya, uji risiko pelapisan litium pada material anoda pada suhu rendah, atau periksa laju penyusutan termal (MSDS) separator pada suhu tinggi. 3. Tingkat sel: Simulasikan musim dingin di zona dingin (misalnya -40℃ hingga -20℃), uji kinerja baterai saat dinyalakan, kapasitas pengosongan, dan laju pengisian daya pada suhu rendah, serta berikan dukungan data untuk meningkatkan kinerja baterai pada suhu rendah. Uji pengisian dan pengosongan daya siklik dilakukan pada suhu tinggi (misalnya 45℃ dan 60℃) untuk mempercepat penuaan dan memprediksi masa pakai jangka panjang serta tingkat retensi kapasitas baterai. 4. Sel bahan bakar: Sel bahan bakar membran pertukaran proton (PEMFC) memiliki persyaratan yang sangat ketat untuk pengelolaan air dan panas. Kemampuan start dingin merupakan hambatan teknis utama untuk komersialisasi sel bahan bakar. Ruang uji mensimulasikan lingkungan di bawah titik beku (misalnya -30℃) untuk menguji apakah sistem dapat berhasil dinyalakan setelah pembekuan dan untuk mempelajari kerusakan mekanis kristal es pada lapisan katalitik dan membran pertukaran proton. 5. Material fotovoltaik: Panel surya harus dapat beroperasi di luar ruangan selama lebih dari 25 tahun, tahan terhadap uji coba berat siang dan malam serta empat musim. Simulasi perbedaan suhu antara siang dan malam (misalnya, 200 siklus dari -40℃ hingga 85℃), kelelahan termal pita solder interkoneksi sel baterai, penuaan dan menguningnya material enkapsulasi (EVA/POE), dan keandalan ikatan antar material laminasi yang berbeda dapat digunakan untuk mencegah delaminasi dan kegagalan.   Ruang uji suhu tinggi dan rendah modern bukan lagi ruang perubahan suhu biasa, melainkan platform pengujian cerdas yang mengintegrasikan berbagai fungsi. Ruang uji canggih ini dilengkapi dengan jendela observasi dan lubang uji, yang memungkinkan peneliti memantau sampel secara langsung selama perubahan suhu.
    BACA SELENGKAPNYA
  • Pemilihan lokasi pemasangan ruang uji perubahan suhu cepat Pemilihan lokasi pemasangan ruang uji perubahan suhu cepat
    Jun 27, 2025
    Pemilihan lokasi pemasangan ruang uji perubahan suhu cepat:Jarak dari dinding yang berdekatan dapat dengan mudah memaksimalkan fungsi dan karakteristik ruang uji lingkungan. Suhu jangka panjang 15-45°C dan kelembapan lingkungan relatif di atas 86% sebaiknya dipilih.Suhu kerja di lokasi instalasi tidak boleh berubah secara signifikan. Harus dipasang pada permukaan yang rata (gunakan waterpas untuk menentukan ketinggian jalan selama pemasangan).Harus dipasang di tempat yang terhindar dari paparan sinar matahari. Harus dipasang di lokasi dengan ventilasi alami yang baik.Harus dipasang di area yang terhindar dari bahan mudah terbakar, produk peledak, dan sumber panas bersuhu tinggi.Sebaiknya dipasang di lokasi yang sedikit berdebu.Pasang sedekat mungkin dengan catu daya switching sistem catu daya.
    BACA SELENGKAPNYA
  • Apa yang harus saya lakukan jika ruang uji suhu tinggi dan rendah bermasalah? Apa yang harus saya lakukan jika ruang uji suhu tinggi dan rendah bermasalah?
    Jun 23, 2025
    Ruang uji suhu tinggi dan rendah mungkin mengalami berbagai masalah dalam proses penggunaan, berikut adalah ringkasan potensi kesalahan dan penyebabnya dari berbagai perspektif:1. Kegagalan sistem intiSuhu di luar kendaliAlasan: Parameter kontrol PID tidak seimbang, suhu sekitar melebihi kisaran desain peralatan, gangguan suhu multi-zona.Kasus: Di bengkel lingkungan khusus, suhu eksternal yang tinggi menyebabkan sistem pendinginan kelebihan beban, sehingga mengakibatkan pergeseran suhu.Kelembaban tidak normalAlasan: kualitas air humidifikasi yang buruk menyebabkan kerak dan penyumbatan nosel, kegagalan lembaran piezoelektrik humidifier ultrasonik, dan regenerasi pengering dehumidifikasi yang tidak lengkap.Fenomena khusus: kondensasi terbalik terjadi selama pengujian kelembapan tinggi, yang mengakibatkan kelembapan aktual di dalam kotak lebih rendah daripada nilai yang ditetapkan.2. Masalah mekanis dan strukturalAliran udara tidak teraturKinerja: Terdapat gradien suhu lebih dari 3℃ di area sampel.Akar permasalahan: rak sampel yang disesuaikan mengubah desain saluran udara asli dan penumpukan kotoran pada bilah kipas sentrifugal menyebabkan rusaknya keseimbangan dinamis. kegagalan penyegelanKegagalan baru: gaya magnet pintu penyegel elektromagnetik berkurang pada suhu rendah, dan strip penyegel silikon menjadi getas dan retak setelah -70℃.3. Sistem kelistrikan dan kontrolKegagalan kontrol cerdasTingkat perangkat lunak: Setelah pemutakhiran firmware, terjadi kesalahan pengaturan zona mati suhu dan luapan data historis menyebabkan program mogok.Tingkat perangkat keras: Kerusakan relai solid state SSR menyebabkan pemanasan berkelanjutan dan komunikasi bus terkena gangguan elektromagnetik inverter.Kerentanan perlindungan keamananBahaya tersembunyi: kegagalan sinkron pada relai proteksi suhu rangkap tiga dan alarm palsu yang disebabkan oleh berakhirnya kalibrasi detektor refrigeran.4. Tantangan kondisi kerja khususKejutan suhu spesifikMasalah: Konversi cepat tegangan las evaporator dari -40℃ hingga +150℃, perbedaan koefisien ekspansi termal mengakibatkan kegagalan segel jendela observasi.Redaman operasi jangka panjangPenurunan kinerja: setelah 2000 jam operasi terus-menerus, keausan pelat katup kompresor menyebabkan penurunan 15% dalam kapasitas pendinginan dan pergeseran nilai resistansi tabung pemanas keramik.5. Dampak lingkungan dan pemeliharaanAdaptasi infrastrukturKasus: Osilasi daya pemanas PTC yang disebabkan oleh fluktuasi tegangan catu daya dan efek palu air dari sistem air pendingin merusak penukar panas pelat.Titik buta pemeliharaan preventifPelajaran: Mengabaikan tekanan positif kotak menyebabkan air memasuki ruang bantalan dan pertumbuhan biofilm serta penyumbatan pada pipa pembuangan kondensat.6. Titik masalah dari teknologi yang sedang berkembangAplikasi refrigeran baruTantangan: masalah kompatibilitas oli sistem setelah R448A menggantikan R404A, dan masalah penyegelan tekanan tinggi pada sistem pendinginan CO₂ subkritis.Risiko integrasi IoTKesalahan: Protokol kendali jarak jauh diserang secara jahat, yang mengakibatkan gangguan program dan kegagalan penyimpanan cloud, yang mengakibatkan hilangnya rantai bukti pengujian.Rekomendasi strategiDiagnosis cerdas: konfigurasikan penganalisis getaran untuk memprediksi kegagalan bantalan kompresor, dan gunakan pencitra termal inframerah untuk memindai titik sambungan listrik secara teratur.Desain keandalan: komponen utama seperti evaporator terbuat dari baja tahan karat SUS316L untuk meningkatkan ketahanan terhadap korosi, dan modul kontrol suhu redundan ditambahkan ke sistem kontrol.Inovasi pemeliharaan: menerapkan rencana pemeliharaan dinamis berdasarkan jam operasional, dan membangun sistem pengujian kemurnian refrigeran tahunan.Solusi untuk permasalahan ini perlu dianalisis bersama dengan model spesifik peralatan, lingkungan penggunaan, dan riwayat perawatan. Disarankan untuk membangun mekanisme perawatan kolaboratif yang melibatkan OEM peralatan, lembaga pengujian pihak ketiga, dan tim teknis pengguna. Untuk item pengujian utama, disarankan untuk mengonfigurasi sistem siaga panas dua mesin guna memastikan kontinuitas pengujian.
    BACA SELENGKAPNYA
  • Apa standar pengiriman Lab Companion? Apa standar pengiriman Lab Companion?
    Jun 23, 2025
    (1) Instalasi dan commissioning peralatanLayanan di tempat: teknisi akan mengirimkan barang secara gratis dan menyelesaikan perakitan mekanis, pemasangan kabel listrik, dan debugging. Parameter debugging harus memenuhi persyaratan suhu dan kelembapan, tingkat deposisi semprotan garam, dan indikator lain yang tercantum dalam perjanjian teknis pelanggan.Kriteria penerimaan: memberikan laporan pengukuran pihak ketiga, dan peralatan yang tidak memenuhi syarat harus langsung dikembalikan atau diganti. Misalnya, kotak uji hujan harus lulus 100% penerimaan.(2) Sistem pelatihan pelangganPelatihan pengoperasian: mencakup menghidupkan dan mematikan peralatan, pengaturan program dan pemeliharaan harian, disesuaikan untuk berbagai skenario pengguna seperti lembaga pemeriksaan mutu dan perusahaan otomotif.Pelatihan pemeliharaan mendalam: termasuk diagnosis kesalahan (seperti pemecahan masalah sistem kelembapan di ruang uji suhu dan kelembapan tinggi dan rendah) dan penggantian suku cadang untuk meningkatkan kemampuan pemeliharaan mandiri pelanggan.(3) Dukungan dan respons teknisRespons instan: menanggapi permintaan perbaikan dalam waktu 15 menit, dan menyelesaikan kerusakan rutin dalam waktu 48 jam (bernegosiasi dengan daerah terpencil).Diagnosis jarak jauh: melalui panduan video atau perangkat lunak akses jarak jauh, segera temukan masalahnya (seperti konsentrasi debu abnormal di ruang uji pasir).(4) Penyediaan dan pemeliharaan suku cadangBuat rencana suku cadang, berikan prioritas pada pasokan suku cadang yang aus dan rusak dari unit koperasi (seperti Pusat Inspeksi dan Sertifikasi Kereta Api China, Grup Teknologi Elektronik China), dan kurangi waktu henti.Kerusakan non-manual tidak dipungut biaya selama masa garansi, dan layanan berbayar diberikan setelah masa garansi dengan biaya transparan.
    BACA SELENGKAPNYA
  • Apa saja yang harus diperhatikan di musim panas saat menggunakan ruang uji benturan air es? Apa saja yang harus diperhatikan di musim panas saat menggunakan ruang uji benturan air es?
    Jun 16, 2025
    Saat menggunakan ruang uji benturan air es Guangdong Hongzhan di musim panas, hal-hal berikut harus diperhatikan secara khusus untuk memastikan pengoperasian peralatan yang stabil dan keakuratan hasil pengujian:1. Manajemen lingkungan dan pembuangan panas Tingkatkan ventilasi dan pembuangan panas Suhu tinggi di musim panas mudah menyebabkan penurunan efisiensi pembuangan panas peralatan. Pastikan ada ruang minimal 10 cm di sekitar peralatan untuk meningkatkan sirkulasi udara. Jika peralatan mengadopsi sistem pendingin udara, debu permukaan kondensor harus dibersihkan secara teratur untuk mencegah pembuangan panas yang buruk dan kompresor yang terlalu panas. Kontrol suhu dan kelembapan lingkungan. Hindari menempatkan peralatan di area yang terkena sinar matahari langsung. Disarankan agar suhu laboratorium dijaga pada 25±5℃ dan kelembapan lebih rendah dari 85%. Lingkungan bersuhu tinggi dan kelembapan tinggi dapat mempercepat akumulasi embun beku atau air kondensasi pada peralatan, sehingga perlu untuk meningkatkan tindakan dehumidifikasi.2. Perawatan sistem refrigerasi Kualitas air dan manajemen tangki. Bakteri mudah berkembang biak di musim panas, jadi gunakan air deionisasi atau air murni untuk menghindari kerak air sadah dan penyumbatan pipa. Disarankan untuk mengganti air tangki setiap 3 hari, serta mengosongkan dan membersihkan tangki sebelum digunakan dalam jangka panjang. Pemantauan efisiensi refrigerasi. Lingkungan bersuhu tinggi dapat menyebabkan sistem refrigerasi beroperasi secara berlebihan. Kondisi oli kompresor harus diperiksa secara berkala untuk memastikan kecukupan refrigeran. Jika suhu air melebihi nilai yang ditetapkan (misalnya 0~4℃), mesin harus segera dihentikan untuk pemecahan masalah.3. Perlakuan frosting dan defrosting Cegah perburukan embun beku. Saat kelembapan tinggi di musim panas, laju embun beku di dalam peralatan dapat meningkat. Disarankan untuk melakukan proses pencairan manual setelah 10 siklus: atur suhu ke 30℃ dan pertahankan selama 30 menit, lalu tiriskan air untuk membersihkan kristal es di permukaan evaporator.Optimalkan interval pengujian untuk menghindari pengujian suhu rendah jangka panjang yang berkelanjutan. Disarankan untuk memberikan waktu penyangga 15 menit antara suhu tinggi (misalnya, 160℃) dan siklus kejutan air es guna mengurangi dampak tekanan termal pada peralatan.4. Penyesuaian spesifikasi operasi Optimasi pengaturan parameter. Berdasarkan karakteristik lingkungan musim panas, waktu pemulihan suhu normal dapat dipersingkat dengan tepat (standar acuan adalah menyelesaikan pergantian suhu dalam 20 detik), tetapi harus dipastikan memenuhi persyaratan GB/T 2423.1 atau ISO16750-4. Perlindungan keselamatan harus diperkuat. Sarung tangan dan kacamata antibeku harus dikenakan selama pengoperasian untuk menghindari lengketnya tangan dan bagian bersuhu rendah akibat keringat. Sebelum membuka pintu setelah uji suhu tinggi, suhu di dalam kotak harus dipastikan di bawah 50℃ untuk mencegah luka bakar akibat uap panas.5. Persiapan darurat dan penutupan jangka panjang Respons kesalahan Jika peralatan memiliki alarm E01 (suhu di luar toleransi) atau E02 (ketinggian air abnormal), segera matikan daya dan hubungi dukungan teknis produsen. Jangan membongkar sendiri pipa pendingin. Perlindungan jangka panjang: Jika tidak digunakan lebih dari 7 hari, kosongkan tangki air, matikan daya, dan tutup dengan penutup debu. Selain itu, nyalakan daya selama 1 jam setiap setengah bulan untuk menjaga papan sirkuit tetap kering. Melalui langkah-langkah di atas, dampak suhu dan kelembapan tinggi di musim panas terhadap ruang uji kejut air es dapat dikurangi secara efektif, memastikan keandalan data uji dan masa pakai peralatan. Detail operasi spesifik harus disesuaikan dengan manual peralatan dan kondisi kerja aktual.
    BACA SELENGKAPNYA
1 2
Totalnya2halaman

Tinggalkan pesan

Tinggalkan pesan
Jika Anda tertarik dengan produk kami dan ingin mengetahui lebih detail, silakan tinggalkan pesan di sini, kami akan membalas Anda sesegera mungkin.
kirim

Beranda

Produk

Ada apa

Hubungi kami