1.KompresiRefrigeran gas bersuhu dan bertekanan rendah mengalir keluar dari evaporator dan dihisap oleh kompresor. Kompresor bekerja pada bagian gas ini (menggunakan energi listrik) dan mengompresnya dengan kuat. Ketika refrigeran berubah menjadi uap super panas bersuhu dan bertekanan tinggi, suhu uap tersebut jauh lebih tinggi daripada suhu sekitar, sehingga menciptakan kondisi yang memungkinkan pelepasan panas ke luar.2. KondensasiUap refrigeran bersuhu dan bertekanan tinggi memasuki kondensor (biasanya berupa penukar kalor tabung bersirip yang terdiri dari tabung tembaga dan sirip aluminium). Kipas mendorong udara sekitar untuk berhembus melewati sirip-sirip kondensor. Selanjutnya, uap refrigeran melepaskan panas ke udara yang mengalir di dalam kondensor. Karena pendinginan, uap tersebut secara bertahap mengembun dari wujud gas menjadi cairan bersuhu sedang dan bertekanan tinggi. Pada titik ini, panas dipindahkan dari sistem refrigerasi ke lingkungan luar.3. EkspansiRefrigeran cair bersuhu sedang dan bertekanan tinggi mengalir melalui saluran sempit melalui perangkat pelambatan, yang berfungsi untuk membatasi dan mengurangi tekanan, mirip dengan menutup lubang pipa air dengan jari. Ketika tekanan refrigeran turun tiba-tiba, suhunya juga turun tajam, berubah menjadi campuran dua fase gas-cair bersuhu rendah dan bertekanan rendah (kabut).4. PenguapanCampuran gas-cair bersuhu rendah dan bertekanan rendah memasuki evaporator, dan kipas lain mengalirkan udara di dalam kotak melalui sirip-sirip evaporator yang dingin. Cairan refrigeran menyerap panas udara yang mengalir melalui sirip-sirip evaporator, menguap dan berevaporasi dengan cepat, lalu kembali menjadi gas bersuhu rendah dan bertekanan rendah. Akibat penyerapan panas ini, suhu udara yang mengalir melalui evaporator turun secara signifikan, sehingga tercapai pendinginan ruang uji. Selanjutnya, gas bersuhu dan bertekanan rendah ini kembali ditarik ke dalam kompresor, memulai siklus berikutnya. Dengan cara ini, siklus tersebut berulang tanpa henti. Sistem refrigerasi terus-menerus "memindahkan" panas di dalam kotak ke luar dan membuang panas tersebut ke atmosfer melalui kipas.
1. Baterai lithium-ion: Pengujian suhu tinggi dan rendah dilakukan pada semua tahap R&D baterai lithium-ion, mulai dari bahan, sel hingga modul.
2. Tingkat material: Evaluasi sifat fisik dan kimia dasar material dasar seperti material elektroda positif dan negatif, elektrolit, dan separator pada berbagai suhu. Misalnya, uji risiko pelapisan litium pada material anoda pada suhu rendah, atau periksa laju penyusutan termal (MSDS) separator pada suhu tinggi.
3. Tingkat sel: Simulasikan musim dingin di zona dingin (misalnya -40℃ hingga -20℃), uji kinerja baterai saat dinyalakan, kapasitas pengosongan, dan laju pengisian daya pada suhu rendah, serta berikan dukungan data untuk meningkatkan kinerja baterai pada suhu rendah. Uji pengisian dan pengosongan daya siklik dilakukan pada suhu tinggi (misalnya 45℃ dan 60℃) untuk mempercepat penuaan dan memprediksi masa pakai jangka panjang serta tingkat retensi kapasitas baterai.
4. Sel bahan bakar: Sel bahan bakar membran pertukaran proton (PEMFC) memiliki persyaratan yang sangat ketat untuk pengelolaan air dan panas. Kemampuan start dingin merupakan hambatan teknis utama untuk komersialisasi sel bahan bakar. Ruang uji mensimulasikan lingkungan di bawah titik beku (misalnya -30℃) untuk menguji apakah sistem dapat berhasil dinyalakan setelah pembekuan dan untuk mempelajari kerusakan mekanis kristal es pada lapisan katalitik dan membran pertukaran proton.
5. Material fotovoltaik: Panel surya harus dapat beroperasi di luar ruangan selama lebih dari 25 tahun, tahan terhadap uji coba berat siang dan malam serta empat musim. Simulasi perbedaan suhu antara siang dan malam (misalnya, 200 siklus dari -40℃ hingga 85℃), kelelahan termal pita solder interkoneksi sel baterai, penuaan dan menguningnya material enkapsulasi (EVA/POE), dan keandalan ikatan antar material laminasi yang berbeda dapat digunakan untuk mencegah delaminasi dan kegagalan.
Ruang uji suhu tinggi dan rendah modern bukan lagi ruang perubahan suhu biasa, melainkan platform pengujian cerdas yang mengintegrasikan berbagai fungsi. Ruang uji canggih ini dilengkapi dengan jendela observasi dan lubang uji, yang memungkinkan peneliti memantau sampel secara langsung selama perubahan suhu.